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• Is [0,1] closed?

• Is    a group?

• What is the fundamental group of          ?

• What is the Fourier series of                      ? 



• Is [0,1] closed?

• Is    a group?

• What is the fundamental group of          ?

• What is the Fourier series of                      ? 

• Is a rectangle prime?

• Is 3 surjective?

• Does a prime converge?







Everything is a set

In ZFC:



isa a well-formed proposition
for all sets A, B.

isa a global relation on sets, so

In ZFC:Everything 
is a set



isa a well-formed proposition
for all sets A, B.

isa a global relation on sets, so

In ZFC:



ZFC is single-sorted



Axiom of Regularity (ZFC):

Every non-empty set X has an element x 
disjoint from itself:



Is         empty?

Axiom of Regularity (ZFC):
Every non-empty set X has an element x 
disjoint from itself:

What does an element of this even look like?



ZFC also includes a set of 
standard encodings of 
mathematical objects



Different objects

all encode

to pure sets



Different files

all encode

to binary strings.



Mojibake

!
Image file

Decoding as text



Using the wrong encodings result in 
meaningless outputs, but that doesn’t

mean files/encodings are useless.

!



Some of the axioms/encodings result in 
meaningless questions, but that doesn’t 

mean sets/encodings are useless.

Axiom of
Regularity

ZFC





N
The (set of) natural numbers



0
The natural number zero



The successor function

s



The successor function

s



counting cardinality

less-than well-ordering

addition simple recursion

The “vulgar” way Axiomatic foundations



N, 0, s













Proposition. A set X has n elements if and 
only if there is a bijection between X and the 
natural number n.



Proposition. A set X has n elements if and 
only if there is a bijection between X and the 
natural number n.



Proposition. A set X has n elements if and 
only if there is a bijection between X and the 
natural number n.

True for Johnny…



Proposition. A set X has n elements if and 
only if there is a bijection between X and the 
natural number n.

True for Johnny…             but not for Ernie.







At least one of these must be “wrong”…



Set-theoretic Platonism:

There is a “true” account; there is a particular 
set that is the “real” set of natural numbers.



Set-theoretic Platonism:

There is a “true” account; there is a particular 
set that is the “real” set of natural numbers.

That is, there is a “correct” assignment of sets to



N, 0, s

Set-theoretic Platonism:

There is a “true” account; there is a particular 
set that is the “real” set of natural numbers.

That is, there is a “correct” assignment of sets to

and all other assignments are wrong.



“...if the number 3 is really one set rather than 
another, it must be possible to give some cogent 
reason for thinking so; for the position that this 
is an unknowable truth is hardly tenable.



But there seems to be little to choose among the 
accounts. Relative to our purposes in giving an 
account of these matters, one will do as well as 
another, stylistic preferences aside.”



Structuralism





Structural Set Theory



Structural Set Theory

?



Structural Set Theory

What is 3?



Structural Set Theory

What is 3? ✗



Structural Set Theory

What are all the 
natural numbers?

What is 3?



Structural Set Theory

What structure is the 
natural numbers?

What is 3?



Structural Set Theory

What structure is the 
natural numbers?

What is 3?



Primitive Notions



Material Set Theories

Sets
&

Membership

axiomatise



Input object One output

function



Material approach:

Represent a functiona              as the relation



Material approach:

Represent a functiona              as the relation

Conversely, a relation R satisfies the property that

then R isa the representation of some functiona.



Material approach:

A function is a relation R satisfies the property that





Let and consider the functions 

both defined by           .



Let and consider the functions 

both defined by           . Then,



Material Set Theories

Sets
&

Membership

axiomatise



Structural Set Theories

Sets
&

Functions

axiomatise



The Yoneda Lemma





X



X

.



X

x
.



X

f(1)

f(0) x

y

f



X



X

.

.



“Generalised element of X
of shape S”







1

[0,1]

S 
1

…

Sampling domain spaces 
to probe from

Target space X



Information 
about maps

Information 
about X



Information 
about maps

Information 
about X



Lemma (Yoneda). Let    be a locally small category.

 Then,

naturally in                   and  .



Corollary. 

if and only if



Subobjects

























A subobject of an object X 
is an isomorphism class of 
monomorphisms into X.



we write

Given a monomorphism

for the subobject represented by S.













Equivalence classes 
of natural numbers

Equivalence classes of 
Cauchy sequences

Or Dedekind cuts.

Or ultrafilters on   .

Material set theory:



So,          .

Equivalence classes 
of natural numbers

Equivalence classes of 
Cauchy sequences

Or Dedekind cuts.

Or ultrafilters on   .

Material set theory:



Asking if          or not because of their 
elements is not the right question.

Structuralism:



Asking if          or not because of their 
elements is not the right question.

Structuralism:

Rather, ask if there is a map          that 
witnesses that         . 



We write

if (any) representing monomorphisms satisfy



We say that an element    is a member
of a subset         and write          if x factors 
through a.



We say that an element    is a member
of a subset         and write          if x factors 
through a.



The Subobject Classifier



where









A subobject classifier in a category    is an 
object O and a map            such that for 
every monomorphism , there exists
a unique morphism                 such that

is a pullback square.



















Monoidal Categories



























Internalisation



A group  is a set G equipped with a binary 
operation                    that is associative, admits 
an identity element       (is unitary), and every 
element         has an inverse            under  .











An internal group in a category    that 
admits finite products is an object G 
equipped with morphisms

such that the previous diagrams all commute.



Set ordinary groups

topological groups

Lie groups

abelian groups

Top

Man

Grp

internal groups 



commutative monoid

(unital) ring

R-algebra

strict monoidal category

internal monoids



Internal Homs















Let     be a monoidal category, and let A and 
B be objects of .

The internal hom-object, or just internal hom, 
of A and B is an object such that

naturally in X.



Let     be a monoidal category, and let A and 
B be objects of .

The internal hom-object, or just internal hom, 
of A and B is an object such that

naturally in X.



A monoidal category is closed monoidal if for 
every object A, the right tensor by A has a 
right adjoint: 

so

naturally in all 3 variables.



A closed monoidal category that is cartesian 
monoidal is called cartesian closed.



A closed monoidal category that is cartesian 
monoidal is called cartesian closed.

Example. Any locally small category has a 
set of morphisms between any two objects. 

Set is locally small. So, Set is cartesian 
closed.



In a cartesian closed category, we write

for the internal hom-object

and call it an exponential object.



This notation is compatible with the 
categorical product in that























Topoi



A (elementary) topos is a category that:

• is finitely complete;
• is cartesian closed;
• has a subobject classifier.



Lemma. Every monomorphism in a topos is regular.

Corollary. Every topos is balanced.

Theorem. Every topos is finitely cocomplete.

Theorem. Every morphism factors essentially uniquely 
through its image into the composition of an 
epimorphism and a monomorphism.



A (elementary) topos is a category that:

• is finitely complete;
• is cartesian closed;
• has a subobject classifier.



Set



Set is non-trivial. That is,            .



Set is non-trivial. That is,            .

 (i)       .



If                  are parallel morphisms such 
that every morphism               equalises f 
and g, then       .



If                  are parallel morphisms such 
thata every morphism               equalises f 
anda g, then       

 (ii) The terminal object 1 is a separator.



(i)       .

 (ii) The terminal object 1 is a separator.

A topos that satisfies (i) and (ii) is called 
well-pointed.

















A natural numbers object is a triple           consisting 
of an object , an element          , and a successor
morphism         with the universal property that
the triple       factors through every other triple
(X, x, r) uniquely:



A natural numbers object is a triple           consisting 
of an object , an element          , and a successor
morphism         with the universal property that
the triple       factors through every other triple
(X, x, r) uniquely:





(iii) Set has a natural numbers object.







(iv) Epimorphisms split.



(i)       .

 (ii) The terminal object 1 is a separator.

 (iii) There is a natural numbers object.

 (iv) Epimorphisms split.



Sets and set functions form a well-pointed topos 
with natural numbers object and Choice.



Sets and set functions form a well-pointed topos 
with natural numbers object and Choice.



Sets and set functions form a well-pointed topos 
with natural numbers object and Choice.



Sets and set functions form a well-pointed topos 
with natural numbers object and Choice.



1. Function composition is associative and has identities
2. There exists an empty set
3. There exists a singleton set
4. Functions are completely characterised by their action on elements
5. Given sets X and Y, we may form their cartesian product
6. Given sets X and Y, we may form the set of functions from X to Y
7. Given a function               and         we may form the fibre
8. The subsets of a set X correspond to the functions 
9. The natural numbers form a set
10. Every surjection admits a section



Material and 
Structural Sets



Structural-setsMaterial-sets



Structural-setsMaterial-sets
determined by generalised elements 
up to isomorphism, but subsets up to 
equality

determined by elements up to 
equality



Structural-setsMaterial-sets
determined by generalised elements 
up to isomorphism, but subsets up to 
equality

elements are never sets

determined by elements up to 
equality

elements are always sets



Structural-setsMaterial-sets
determined by generalised elements 
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Structural-setsMaterial-sets
determined by generalised elements 
up to isomorphism, but subsets up to 
equality

elements are never sets

abstract structures encapsulate and 
isolate properties without side effects

determined by elements up to 
equality

elements are always sets

lots of side effects from constructions





















i.e. functions

does z factor
through L?



Structural-setsMaterial-sets
determined by generalised elements 
up to isomorphism, but subsets up to 
equality

elements are never sets

abstract structures encapsulate and 
isolate properties without side effects

type-declaration membership; 
supports propositional patterns in 
the presence of ambient sets.

determined by elements up to 
equality

elements are always sets

lots of side effects from constructions

propositional membership only
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